书城教材教辅元素与光
8064000000012

第12章 元素(12)

第99号和第100号元素则是在一种更加戏剧性的场合下发现的,它们是1952年11月第一颗氢弹在太平洋上空爆炸时出现的。尽管它们的存在早已在爆炸碎片中被检测到,但是直到加利福尼亚大学的研究小组于1955年在实验室中获得了少量这两种元素以后,它们才得到确认,并被分别命名为锿和镄,前者是为了纪念爱因斯坦,后者则是为了纪念费米,因为他们两人都在这以前几个月去世了。后来,这个研究小组又对少量的锿进行了轰击,并获得了第101号元素。他们把这个元素命名为钔,以纪念门捷列夫。

接着,加利福尼亚大学又和瑞典的诺贝尔研究所合作,在这个基础上向前迈进了一步。诺贝尔研究所进行了一种特别复杂的轰击,产生了少量的第102号元素,这个元素被命名为锘,是以诺贝尔研究所的名字来命名的,但是这项实验没有得到确认。后来又有人用别的方法而不是用诺贝尔研究所最先介绍的方法获得了这个元素,因此,在锘被正式公认为这个元素的名称之前,曾有一段时间的拖延。

1961年,加利福尼亚大学的一个研究小组检测出第103号元素的一些原子,并把这种元素定名为铹,这是为了纪念劳伦斯,因为他是不久前去世的。后来,前苏联弗廖罗夫所领导的研究小组报道说,他们在1964年和1967年分别获得了第104号和第105号元素,但是他们用来产生这两种元素的方法并没有得到确认。后来,美国吉奥索领导的研究小组用别的方法产生了这两种元素。

这样,在谁先发现这两种元素的问题上,就发生了激烈的争论,两个研究小组都宣称它们有权为这两种元素命名。国际纯粹与应用化学联合会为解决命名争执问题,自1971年以来,曾多次开会讨论,均未解决。为此,该联合会无机化学组于1977年8月正式宣布以拉丁文和希腊文混合数字词头命名100号以上元素的建议。据此,第104号元素的英文名称为unnilquadium,符号Unq;第105号元素的英文名为unnilpentium,符号Unp。

不过竞争还没有结束,1974年弗廖罗夫的研究小组用加速器加速的铬离子轰击铅靶,反应合成了质量数为259的第106号元素的同位素。几乎同时,美国的吉奥索用加速器加速的氧离子轰击259微克的锎靶,反应合成了质量数为263的第106号元素的同位素,并用测量263衰变链子体的方法进行了鉴定。

1976年弗廖罗夫的研究小组用加速器加速的铬离子轰击铋靶,合成了质量数为261的第107号元素的同位素,并用测量261的衰变链子体的方法进行了鉴定,这一回苏联人领先了。后来,1981年联邦德国达姆斯塔特重离子研究所的明岑贝格等人用加速的铬离子轰击铋靶,合成了质量数为262的第107号元素的同位素。实验期间,他们每天能获得2个来自262衰变的α粒子,总共观察到6个计数。

1982年明岑贝格的科学小组用加速器加速的铁离子轰击铋靶,合成了质量数为266的第109号元素的同位素。在长达一个星期的轰击合成实验中,只获得了一个新元素原子。在266合成后5/1000秒时射出了具有11.10兆电子伏能量的α粒子。他们就是利用这唯一的事件,成功地用四种不同方式进行了鉴定,尤其是用测量266的衰变链子体的方法确证第109号元素的合成。

第108号元素的发现晚于第109号元素,1984年明岑贝格等再次用加速器加速的铁离子轰击铅靶,反应合成质量数为265的第108号元素的同位素(或266)。总共记录了3个265(或266)原子,其寿命测定值分别为24毫秒、22毫秒、34毫秒,并通过测量265的衰变链子体的方法,确证第108号元素的合成成功。此后至今,再没有新的元素被发现或合成出来。

在攀登超铀元素这个阶梯时,每登上一级都比前一级更为困难,原子序数越大,元素就越难收集,并且也越不稳定。当达到钔这一级时,对它的证认已开始仅靠17个原子来进行。好在辐射探测技术自1955年起已经非常高超。伯克利大学的科学工作者在他们的仪器上装了一个警铃,每次只要有一个钔原子产生,在它衰变时放射出的辐射就会使警铃发出很响的铃声,来宣告已经发生了这样一件事。

从门捷列夫正式提出元素周期律,到1984年合成第108号元素的100多年的时间里,人们发现或合成了46种元素,每一种元素的发现都证明了门捷列夫的理论的正确性。它促使人们去研究元素周期性所包含得更深层次的理论根据,从而引导人们进入了原子的世界。

寻找填补空位的新元素

X射线的发现为周期表的历史开辟了一个新的时代。1911年,英国物理学家巴拉克发现,当X射线被金属散射时,散射后的X射线的穿透本领会随着金属的不同而迥然不同。

1914年,英国青年物理学家莫塞莱确定了各种金属所产生的标识X射线的波长,并得到了一个重要的发现:各元素的波长非常有规律地随着它们在周期表中的排列顺序而递减。

这使得各种元素在周期表中应处的位置完全固定下来了。如果周期表中有两个挨在一起的元素,它们所产生的X射线的波长差比原来预期的差值大一倍的话,那么它们之间肯定应当有一个属于未知元素的空位;如果两个元素的标识X射线的波长差同预期值并没有出入,那么就可以肯定它们之间并不存在着待填补进去的元素。这样,人们就有可能确切地知道元素的确定数目了。

化学家们当时把元素从1(氢)一直排列到92(铀),并且发现,这种“原子序数”不仅对于了解原子的内部结构十分重要,而且比相对原子质量更为重要。

莫塞莱的新体系很快就被证明是很有价值的。法国化学家于尔班在发现了镥以后,曾宣布他又发现了另外一种被称之为“锯”的新元素。

根据莫塞莱的体系,镥是第71号元素,而“锯”则应该是第72号元素。但是在莫塞莱分析了“锯”的标识X射线以后,弄清了所谓“锯”实际上仍然是镥。第72号元素一直到1923年,才被丹麦物理学家科斯特和匈牙利化学家赫维西在哥本哈根的一个实验室中检测出来,并定名为铪。

当莫塞莱去世以后,他的方法的准确性得到了证实。莫塞莱是在1915年作为第一次世界大战的牺牲者,在加利波利死去的,当时才28岁。瑞典物理学家西格班扩展了莫塞莱的工作,他发现了一系列新的X射线,并精确地测定了各种元素的X射线谱,并因此项工作在1924年而获得了诺贝尔物理学奖。

1925年,德国的诺达克、塔克和贝格又填补了周期表的另外一个空位。他们在对可能含有他们要寻找的这种元素的矿石进行了3年的研究以后,终于发现了第75号元素,并把它定名为铼。这就使得周期表中尚待填补的空位只剩下了4个,即第43号、第61号、第85号和第87号元素。

没想到的是,用了整整20年的时间,人们为了寻找到剩下的这4个元素。当时的化学家们并没有认识到所有的稳定性元素已经全部找到,而这些尚待填补的元素都是不稳定的元素,它们在今天的地球上已经极其稀少,因而除了其中一个元素以外,全都必须在实验室中用人工方法制备出来,才能加以认证。