书城教材教辅智力加油大派队(中小学生奥林匹克集训与选拔)
5977700000004

第4章

此外,莱布尼茨还提出了使用“函数”一词,首次引进了“常量”,“变量”和“参变量”,确立了“坐标”、“纵坐标”的名称。他对变分法的建立及在微分方程、微分几何、某些特殊曲线(如悬链曲线)的研究上都做出了重大贡献。

欧拉时代

1707年4月15日,瑞士巴塞尔城附近的里恩村,有一位叫保尔·欧拉的牧师家里诞生了一个男孩,这就是后世称其为“百科全书式的数学家”欧拉。

小欧拉自幼聪颖,7岁那年,父亲把他送到巴塞尔神学校去学习神学。起初,他对上帝创世深信不疑。一次,他问老师:“天上有多少颗星?”老师答不出来,只是说:“天上的星星都是上帝亲手嵌上去的。”于是,小欧拉问:“既然上帝亲手制作了星星,为什么记不住它们的数目呢?”他对上帝的信仰开始动摇,也不专心听课了。不久,学校开除了他。

父亲保尔通数学,见儿子不愿学神学,就开始向他传授数学知识。小欧拉如鱼得水,立刻入了迷。

1719年,欧拉12岁。父亲为了考一考儿子的能力,正赶上家里要修羊圈。于是,他给出了一个固定长度,让欧拉围成一个面积最大的方形羊圈。欧拉想来想去,把它围成了一个正方形。于是,小欧拉“巧围羊圈”的故事不胫而走,被巴塞尔大学的着名数学教授伯努利约翰知道了。这位教授竟亲自出城,找到欧拉的父亲,说要保举小欧拉去大学学数学。老欧拉却说:“教授,我希望他将来是一位神学家,而不是数学家。”约翰说:“可你知道吗,这孩子是个数学天才。如果你固执己见,会葬送这孩子的前程。”

在约翰教授的劝说下,老欧拉终于点头了,13岁的小欧拉被巴塞尔大学破格收录了。欧拉不负老师厚望,入学后勤奋好学,广闻博览,又善于独立思考,不久就可以与那些年龄大的同学比肩。他的老师约翰则根据他的特点因材施教,循循善诱,每周六的下午都挤出时间为他个别辅导,使他的学业突飞猛进。17岁时,欧拉便成为巴塞尔大学第一位最年轻的硕士。1726年,欧拉发表了讨论船桅最佳位置选择的论文,荣获巴黎科学院的奖金。

1727年,欧拉由丹尼尔推荐,受俄罗斯女王叶卡特琳娜的聘请,来到彼得堡科学院任院长,做丹尼尔的助手。

1733年,丹尼尔回国,欧拉接替丹尼尔的工作,成为数学教授及彼得堡科学院的学部领导人。由于当时俄国统治集团长期陷入权力之争,无心科学事业,科学院的生存岌岌可危。1733年至1741年,欧拉的工作条件相当艰苦。他的许多不朽着作,都是在“膝上坐着孩子,肩上趴着猫”的情况下写出来的。欧拉还担负着许多社会责任,如承担菲诺运河的改造方案,宫廷排水设施的设计审定,为俄国学校编写教材,帮助政府绘制地图,制定度量衡标准,为气象部门提供天文数据,协助建筑单位进行设计结构的力学分析……由于他长期疲劳工作,又长期观测太阳,使他的视力迅速衰退。

1735年,年仅28岁的欧拉右眼失明了。就在这时,有关“七桥问题”传入彼得堡科学院,欧拉出于对数学的热爱,又潜心研究起“七桥问题”。

“七桥问题”是古希腊人留下的一道难题。18世纪初,波罗的海沿岸的古城哥尼斯堡(今加里宁格勒),普雷格尔河横贯市区。这条河在市区内分成两个支流,把奈发夫岛截成两段并把两岛环抱起来,形成了一个美妙的“8”字。

有好事者根据古人的“七桥问题”,就在这里建起了七座桥,把两个小岛和两岸连接起来。

于是,这个问题直观地摆在游人面前:一个人怎样才能一次走过七座桥,而且每座桥只经过一次,最后又回到出发点。

从此,无论是稚气未退的少年还是白发苍苍的老者,都想试一试自己的智力。他们在这七座桥上穿来走去,但都没有一个人能成功过。因此,这七座桥便很快地名扬欧洲,又引来一批批游客。但是,又有多少年过去了,还是没人成功。

这时,29岁的独眼青年欧拉也来到了哥尼斯堡,他在桥上走了几次之后,想道:“千百万人的无数次失败,是不是说明这样的走法根本就不存在呢?”

猜想是需要证明的。于是,欧拉埋头对这个猜想进行证明。他先用“穷举法”,即把所有可能的走法列成表格,逐一检查哪种走法能行得通。结果他发现这是一件相当繁琐的事情,要列出7×6×5×4×3×2=5040条路线来!这太困难。另外,他又想到,如果存在更多的桥,或一个城市有更多的街道,那可如何列呀?

于是,他换了一种思维方式,想到了莱布尼茨的“位置几何学”。经过细心推想,他把两个小岛和两岸陆地看成A、B、C、D四个点,而把7座桥看成是7条线,就画成了一幅图:

由于此图有点像蝉,所以后人称之为“欧拉金蝉”。通过这个图形,欧拉严谨地证明:不可能不重复地一次走遍这7座桥。

很明显,“七桥问题”是一个几何图形问题。但是,在此之前的传统几何学却把它排除在外,因为人们所熟知的几何理论,都是与“量”(长短、大小等)有关,而这个问题居然与“量”无关。“七桥问题”提出了一个新的几何学的分支——“拓扑学”。欧拉一举证明了“七桥问题”一时引起人们的敬慕和惊叹,求教的人络绎不绝。后人称他为“拓扑学的鼻祖”。接着,欧拉又继续研究,他的几何学超出了欧几里得的范围,从而奠定了“网络论”几何学科的基石。

1741年,欧拉不能忍受俄国统治者的昏庸腐败,离开了生活14年的彼得堡,踏上了普鲁士国土。1759年,他成为柏林科学院的领导人,为普鲁士王国解决了大量的社会实际问题。如社会保险、运河水力、造币规划等。他成功地将数学应用到各种实际的科学和技术领域。

1762年,俄国的叶卡特琳娜二世继位。在这位有为的女王敦请下,欧拉重返彼得堡,继续他的研究和工作。1766年,欧拉的左眼又失明了,使他完全成了一个盲人。但他仍以顽强的毅力,采用口述,由别人记录的方法,坚持他的研究。

1777年,更大的不幸降临,欧拉的家里不慎失火,他的着述几乎全都变为灰烬。这对于70岁高龄的欧拉来说,是一个致命的打击。然而,欧拉却以惊人的毅力,重新开始他的着述。他的头脑里如一卷百科全书,他不停地口述,助手为其记录,居然把他葬身火海的着作全都重新写了出来,而且还进行了一次订正!

1783年9月18日,欧拉走过了76年的历程与世长辞。他死后,数学家们把他的着作编成全集出版,竟达72卷之多。

在欧拉的着作中,“无限小分析”方法是从欧拉开始的;变分学基础是欧拉方程;拓扑学中有欧拉数;刚体力学有欧拉角;复变函数中有欧拉函数;数论中有欧拉定理……后人称欧拉为“数学分析的化身”。在世界数学发展史上,人们把18世纪称为“欧拉时代”。

命运多舛的数学之星

1832年5月30清晨,在法国同提勒的一个湖边,有位农民发现一个受了枪伤的青年躺在地上。这位好心的农民立刻找来村民,把这个青年抬进了医院。可惜,由于他伤势过重,流血过多,第二天就死去了。过后,人们才知道,这位青年不满20岁,是因为与人决斗而死的。不久,人们又知道,这位青年精通数学,留下了虽然是薄薄60页的书稿,但却有着十分重要的科学价值。又过了数年,数学界、物理学界和化学界的学者们猛然发现,这位早亡的不满20岁的青年创立了一个数学上的新分支——群论。这一理论可以使人们深入地探讨各种不同的学科,诸如算术、结晶学、粒子物理以及鲁比克魔方的翻法……能应用于数、理、化各个领域,因此,法国人把他誉为“法兰西科学之光”。这位19岁的青年就是埃瓦里特·伽罗华。

伽罗华1811年10月26日出生于巴黎近郊的布拉伦镇。父亲是一位热衷民主共和的政治家,母亲是一位受过良好教育的法官的女儿。12岁时,他考入一所着名的皇家中学。在中学里,迷上了令同学们生厌的数学,之后便一发不可收,课内课外阅读了大量数学书籍。其中,他居然用了一周时间,一口气读完了勒让德的经典着作《几何原理》。

有一天,主持课外数学讲座的理查老师,为了刹一刹课外活动小组个别学生的傲气,故意给学生们留了一道数学难题让他们课后去做。伽罗华整整做了一个通宵,终于在第二天凌晨把这道题做完了。他敲开理查老师的家门,理查披着睡衣走出房间,听说伽罗华来交作业,就冷谈地说:“留下来我看看吧,恐怕你们这些人还没有谁能完成这个题目!”

伽罗华走了后,理查又忙别的事情去了。直到这天晚上,他才无意中拿起了伽罗华的作业随便看上一眼。谁知不看则已,一看便不能释手,最后竟大呼起来:“奇才,奇才!”

原来,理查是从数学大师高斯的着作思考题中找出了一道怪题,此类题就是造诣很高的成年数学专门人才,也得费很大劲才能做出来。谁知伽罗华居然做出了几个不同解法。

他被这少年的超人智慧折服了,他暗下决心,一定要下大力气培养他。

当理查问伽罗华做此题的感受时,伽罗华平静地说:

“高斯提出的问题我已经考虑好久了。其中的习题有的我已经做了好几遍了。”当伽罗华讲述他理解此题的经过和思路时,讲到精采处,理查情不自禁地鼓起掌来。他对其他教师说:“伽罗华最适宜在数学的尖端领域中做研究工作。”之后,他帮助伽罗华撰写了第一篇数学论文《循环连分数定理》,并推荐在《纯粹与应用数学年鉴》上发表。

16岁时,伽罗华考入巴黎师范大学。入学半年,他向法国科学院提交了有关群论的第一篇论文。不久,他又以超人的才气完成了几篇数学研究文章,以应征巴黎科学院的数学特别奖。谁知命运对他极不公正,使他连遭厄运。

当科学院第一次审查会开始时,法国数学家柯西是一位心胸狭隘的人。当他打开公文包时,耸耸肩,却说:“非常遗憾,伽罗华的论文不知怎么丢失了。”于是审查会不得不草草收场。伽逻华还曾向法国科学院寄过几篇数学论文,经手的人是常务秘书傅立叶。傅立叶也是一位大数学家。岂知事不凑巧,傅立叶接到手稿后不久去世了,人们在他的遗物中也没有找到伽罗华的手稿。

1831年1月17日,科学院第三次审查伽罗华的论文。

主持人是大数学家泊松。泊松出于傲慢与偏见,认为伽罗华只是一个普通高校的普通大学生,难有什么创见,因此没有认真听伽罗华的论文宣读,便草率地下了一个结论:“完全不能理喻。”

尽管命运如此不公,但伽罗华仍继续他的数学研究。他涉足了方程论、群论、可积函数等众多领域,创立了“伽罗华理论”,为群论打下了坚实的基础。除此之外,他还在数学中建立了许多概念,他的研究成果在大量的、各种各样的数学研究中得到广泛应用。在他的着作基础上,产生了许多全新的数学分支……伽罗华还是一个倾向民主共和的积极分子。为了纪念法国人民攻占巴士底狱,他参加了反对复辟王朝的群众游行示威,并因此被逮捕,在狱中被关押8个月。

就在他出狱不久,为了一桩至今仍是谜团的恋爱纠纷,被迫接受决斗,因而惨死枪下。

也许他知道此次决斗凶多吉少,于是他留下了遗言给他的同伴。信中写道:“我请求大家不要责备我不是为自己的祖国而献出生命……苍天作证,我曾经用尽办法试图拒绝决斗,只是出于迫不得已才接受了挑战。”

他还在自己留下的60页数学手稿中留下了字条:“这个论据需要补充,现在没有时间。”

伽罗华英年早逝,无疑是数学界的一大损失。一些大学者们认为,他的死,“至少使数学发展推迟了几十年。”

玻洛汉姆桥上的数学发现

爱尔兰的都柏林市有一座名叫玻洛汉姆的桥。至今,桥头仍立着一块石碑,碑文刻的是:“1843年10月16日,当威廉·哈密顿经过此桥时,他天才地发现了四元数的乘法基本公式。”人们经过这里,都要驻足观看碑文,缅怀哈密顿对科学的伟大贡献。

哈密顿,1805年生于爱尔兰首府都柏林。他的父亲是一位律师兼商人,母亲是名门小姐,父母都很有才华。但是,到他14岁时,双亲都不幸相继去世。从此,他的叔叔詹姆士·哈密顿成了他的监护人。詹姆士是一位精通多种语言的专家,哈密顿从小就受其影响,在语言上得到了早期发展。正是早期的语言发展,提高了他的逻辑思维能力,为他在数学的成就奠定了基础。

12岁时,哈密顿读完了《几何原本》,接着,又读完了法国数学家克莱罗的《代数基础》。13岁时,从美国来了一位数学神童。于是,两位神童互相切磋,取长补短,使他在数学上的兴趣大增。17岁时,哈密顿就掌握了微积分,并学会了计算日食和月食的数理天文学。18岁时,他参加了都柏林三一学院的入学考试,在100多名考生中,他以第一名的成绩被录取。

1827年,22岁的哈密顿大学还没有毕业,就写成了《光线系统理论》的论文。这篇论文为几何光学的建立奠定了素材基础,并且引入了所谓光学的物征函数。后来,哈密顿又对该论文作了三个补充,从数学理论推演出,在双轴晶体中按某一特殊方向传播的光线,将产生折射光线的一个圆锥。这个论点后来被光学实验证实了。

当时学院里有一位很有影响的天文学教授叫布瑞克莱,他十分欣赏哈密顿的才华。1827年,布瑞克莱宣布辞去都柏林三一学院天文学教授的职位。他极力推荐,并说服校方,年仅22岁的哈密顿就成了布瑞克莱的继承人,成为天文学教授。与此同时,哈密顿又荣获了爱尔兰皇家天文学家的称号。

但是,哈密顿的志向不在天文学上,他全力以赴地钻研数学。1828年开始,他就着手研究四元数。四元数是实数、复数这个数系的发展,是超复数的一种,即属于四维矢量。用现代术语来说,它是一个线性代数的组成部分。

然而,经过十几年的苦心钻研,哈密顿仍然没有成功。

1843年,已经是他研究四元数的15个年头了。这年的10月16日黄昏,哈密顿的妻子见丈夫整日埋头书堆,劳累不堪,于是费了好大劲才把他劝动,拉他外出散步。

当时秋高气爽,景色宜人。哈密顿在妻子的陪同下,漫步在皇家护城河畔的林荫道上。一阵阵秋风吹来,带着成熟的果香。哈密顿贪婪地呼吸着河畔清新的空气,不禁心旷神怡。他暂时忘了他醉心的数学题目,陶醉在大自然之中。

他们夫妻俩走上了玻洛汉姆桥,驻足桥上,望着暮色中的街景桥影,哈密顿的大脑思维突然再度活跃起来,闪光、跳荡、寻觅、联想……突然,他的思维大门一下子打开了,智慧的冲击波冲破了以往的障碍束缚,他一下子悟出了四元数运算的奥秘。他立刻掏出随身携带的笔记本,把他头脑中闪光的要点迅速记录下来。追求15年之久的四元数研究目标,终于在玻洛汉姆桥上找到了它的解法。哈密顿唯恐思路中断,急忙拉起他的夫人往家里跑去,这时,其他散步的男女老少都用奇异的目光看着这一对怪人。