书城公版PHYSICS
15486800000110

第110章 10(1)

We have now to assert that the first movent must be without parts and without magnitude, beginning with the establishment of the premisses on which this conclusion depends.

One of these premisses is that nothing finite can cause motion during an infinite time. We have three things, the movent, the moved, and thirdly that in which the motion takes place, namely the time: and these are either all infinite or all finite or partly-that is to say two of them or one of them-finite and partly infinite. Let A be the movement, B the moved, and G the infinite time. Now let us suppose that D moves E, a part of B. Then the time occupied by this motion cannot be equal to G: for the greater the amount moved, the longer the time occupied. It follows that the time Z is not infinite. Now we see that by continuing to add to D, I shall use up A and by continuing to add to E, I shall use up B: but I shall not use up the time by continually subtracting a corresponding amount from it, because it is infinite. Consequently the duration of the part of G which is occupied by all A in moving the whole of B, will be finite.

Therefore a finite thing cannot impart to anything an infinite motion.

It is clear, then, that it is impossible for the finite to cause motion during an infinite time.

It has now to be shown that in no case is it possible for an infinite force to reside in a finite magnitude. This can be shown as follows: we take it for granted that the greater force is always that which in less time than another does an equal amount of work when engaged in any activity-in heating, for example, or sweetening or throwing; in fact, in causing any kind of motion. Then that on which the forces act must be affected to some extent by our supposed finite magnitude possessing an infinite force as well as by anything else, in fact to a greater extent than by anything else, since the infinite force is greater than any other. But then there cannot be any time in which its action could take place. Suppose that A is the time occupied by the infinite power in the performance of an act of heating or pushing, and that AB is the time occupied by a finite power in the performance of the same act: then by adding to the latter another finite power and continually increasing the magnitude of the power so added I shall at some time or other reach a point at which the finite power has completed the motive act in the time A: for by continual addition to a finite magnitude I must arrive at a magnitude that exceeds any assigned limit, and in the same way by continual subtraction I must arrive at one that falls short of any assigned limit. So we get the result that the finite force will occupy the same amount of time in performing the motive act as the infinite force. But this is impossible. Therefore nothing finite can possess an infinite force. So it is also impossible for a finite force to reside in an infinite magnitude. It is true that a greater force can reside in a lesser magnitude: but the superiority of any such greater force can be still greater if the magnitude in which it resides is greater. Now let AB be an infinite magnitude. Then BG possesses a certain force that occupies a certain time, let us say the time Z in moving D. Now if I take a magnitude twice as great at BG, the time occupied by this magnitude in moving D will be half of EZ (assuming this to be the proportion): so we may call this time ZH.

That being so, by continually taking a greater magnitude in this way I shall never arrive at the full AB, whereas I shall always be getting a lesser fraction of the time given. Therefore the force must be infinite, since it exceeds any finite force. Moreover the time occupied by the action of any finite force must also be finite: for if a given force moves something in a certain time, a greater force will do so in a lesser time, but still a definite time, in inverse proportion. But a force must always be infinite-just as a number or a magnitude is-if it exceeds all definite limits. This point may also be proved in another way-by taking a finite magnitude in which there resides a force the same in kind as that which resides in the infinite magnitude, so that this force will be a measure of the finite force residing in the infinite magnitude.